The spin-delocalization substituent parameter σ_{JJ} . 9. Cyclodimerization rates of *para*-methylsulfinyl and *para*-methylsulfonyl α,β,β -trifluorostyrenes

Xi-Kui Jiang*, Guo-Zhen Ji and Ze-Rong Wang

Shanghai Institute of Organic Chemistry, Academia Sinica, 345 Lingling Lu, Shanghai 200032 (China)

Abstract

¹⁹F NMR data and rate constants for the thermal cyclodimerization of *para*-methylsulfinyl α,β,β -trifluorostyrene (1) and *para*-methylsulfonyl α,β,β -trifluorostyrene (2) have been measured. On the basis of these data, the σ_{mb} and σ_{JJ} values for *p*-MeSO and *p*-MeSO₂ groups have been evaluated. Three methods for the calculation of the σ_{JJ} scale yielded the same set of σ_{JJ} constants.

Introduction

Very recently, we have reported a self-consistent and thoroughly cross-checked scale of spin-delocalization substituent constants, σ_{IJ} , which is based on the ¹⁹F NMR data for Y-substituted α, β, β -trifluorostyrenes (Y-TFSs) and the rate constants for their thermal cyclodimerization reactions. [1] The σ^{*} value of a substituent should only reflect the ability of this substituent to delocalize the spin. We consider that it would be desirable to obtain reliable σ values for sulfur-containing groups. Although the methylthio group is already known to possess an exceptionally high ability to delocalize spin [2], the spin-stabilizing ability of sulfur in its oxidized forms (e.g. in sulfoxides and sulfones) is not known with certainty. On the one hand, Arnold's σ_{α} values [3] suggest that MeSO ($\sigma_{\alpha} = 0.018$) is much more capable of stabilizing spin than MeSO₂ $(\sigma_{\alpha} = 0.005)$. On the other hand, Creary's σ_{C} values for these two groups are almost the same [4]. Therefore, with the objective of tackling this problem by our approach, we synthesized para-methylsulfinyl and paramethylsulfonyl α,β,β -trifluorostyrenes (1 and 2), obtained their ¹⁹F NMR and σ_{mb} values, measured their rates of thermal cyclodimerization and thereby evaluated their σ_{ij} values. In this paper, the results of three methods of calculating the σ yalues are also presented.

Results and discussion

In Y-TFSs, the chemical shifts of F^1 and F^2 , as well as the difference between the chemical shifts of F^3 and F^1 (δ_{3-1}), or F^3 and F^2 (δ_{3-2}), reflect the degree of polarization of the double bond in Y-TFSs [5]. Thus, the effects of polar substituent on the π -bonds of Y-TFSs can be evaluated by eqn. (1)

$$\sigma_{\rm mb} = 0.16\Delta\delta_{3-1} - 0.09\tag{1}$$

where $\Delta \delta_{3-1} = (\delta_{3-1})_{Y} - (\delta_{3-1})_{H}$. The tailor-made polar substituent parameter σ_{mb} reflects the ability of a given substituent Y to polarize the π -bond of the corresponding Y-TFS in the ground state.

We have used a dual parameter [eqn. (2)] in our approach to the σ_{ij} scale.

$$\log(k/k_{\rm H}) = \rho_{\rm mb}\sigma_{\rm mb} + \rho \dot{\sigma}_{\rm JJ} \tag{2}$$

In eqn. (2), the kinetic rate constants (k values) are measured for the thermal dimerization of Y-TFSs at five different temperatures. The value of ρ^{\cdot} is arbitrarily taken as unity. In the initial development stage of our σ_{JJ} approach [6], an operable or 'reasonable' value of ρ_{mb} had to be found. We therefore made a tentative assumption that the spin-delocalizing effect of a *meta*methyl group on the transition state of a benzylic radical is negligible, i.e. the σ_{JJ} value of *m*-Me is virtually zero. With this assumption, eqn. (2) becomes eqn. (3):

$$\rho_{\rm mb} = \log(k_{m-Me}/k_{\rm H})/\sigma_{\rm mb \ for \ m-Me} \tag{3}$$

which yields the $\rho_{\rm mb}$ values for the different temperatures (see Table 1) if the corresponding k_{m-Me} , $k_{\rm H}$ and $\sigma_{\rm mb}$ values are substituted into eqn. (3). By using five $\rho_{\rm mb}$ values for the five temperatures, all the $\sigma_{\rm JJ}$ values can be calculated via eqn. (4) if the $k_{\rm Y}$ values of the Y-TFSs and the $\sigma_{\rm mb}$ values of the Ys have been accurately

^{*}Author to whom correspondence should be addressed.

^{0022-1139/94/\$07.00 © 1994} Elsevier Sequoia. All rights reserved SSDI 0022-1139(93)03018-H

TABLE 1. The ρ_{mb} values at different temperatures

	Temperature (°C)						
	110	120	140	150	160	Average	
$\rho_{mb}(m-Me)$ $\rho_{mb}(m-NO_2)^a$						-0.35 ± 0.04	

^aThe $\rho_{mb}(m-NO_2)$ values were calculated on the basis of the tentative assumption that the σ_m value for the *m*-NO₂ group was essentially zero.

measured. This method of calculation is designated Method A, which also yields the averaged σ_{JJ} values recommended for general use in the second to last column of Table 2.

$$\sigma_{\rm JJ \ for \ Y}^{\star} = \log(k_{\rm Y}/k_{\rm H}) - \rho_{\rm mb}\sigma_{\rm mb \ for \ Y} \tag{4}$$

In order to cross-check the reliability of these σ values, we also tried two other approaches, designated as Method B and Method C, respectively. In Method B, only one $\rho_{\rm mb}$ value of -0.35 (the average of the five $\rho_{\rm mb}$ values listed in Table 1) was used for the calculation of the σ values listed in Table 3. In Method C, only one $\rho_{\rm mb}$ value of -0.30 (the value derived for 140 °C) was used to give the σ values listed in Table 4. Again, for each method we calculated five sets of $\sigma_{\rm JJ}$ constants for each of the five temperatures, as well as the average of these five sets (average $\sigma_{\rm JJ}$ values, cf. Tables 3 and 4). We tried these different methods of calculation (A, B and C) on the basis that only the relative magnitudes of the $\sigma_{\rm JJ}$ constants are of significance. Hence, the trustworthiness and reliability of our $\sigma_{\rm JJ}$ scale can be cross-checked and tested via the correlation between all the $3 \times 6 = 18$ sets of $\sigma_{\rm JJ}$ values.

As shown in all these tables, the standard deviations of the σ_{JJ}^{*} values for most of the substituents are less than 0.05 units. This indicated that the σ_{JJ}^{*} values are not much affected by temperature, and the precision (or repeatability) of the σ_{JJ}^{*} values is relatively good.

TABLE 2. Method A: σ_{IJ} values based on different ρ_{mb} values at different temperatures

Y	Temperature	: (°C)				
	110	120	140	150	160	Averaged σ_{ij} values
H	0	0	0	0	0	0
p-NMe ₂	1.15	1.07	1.00	0.89	0.91	1.00 ± 0.11
p-MeS	0.52	0.56	0.59	0.71	0.71	0.62 ± 0.09
<i>p</i> -COMe	0.59	0.55	0.50	0.59	0.49	0.54 ± 0.05
p-MeSO	0.53	0.47	0.47	0.48	0.54	0.50 ± 0.03
p-Ph	0.49	0.49	0.44	0.45	0.46	0.47 ± 0.02
p-CN	0.43	0.45	0.36	0.47	0.39	0.42 ± 0.04
p-McSO ₂	0.40	0.39	0.36	0.44	0.45	0.41 ± 0.04
p-COOH	0.44	0.42	0.34	0.34	0.37	0.38 ± 0.05
p-CONH ₂	0.39	0.40	0.37	0.40	0.33	0.38 ± 0.03
$p-NO_2$	0.40	0.41	0.32	0.40	0.29	0.36 ± 0.06
p-COOMe	0.32	0.34	0.30	0.38	0.32	0.33 ± 0.03
p-SiMe ₃	0.33	0.32	0.29	0.31	0.28	0.31 ± 0.02
<i>p</i> -Pr ^c	0.37	0.30	0.27	0.25	0.25	0.29 ± 0.05
p-Bu ^t	0.23	0.25	0.30	0.23	0.30	0.26 ± 0.04
p-OMe	0.28	0.24	0.23	0.21	0.20	0.23 ± 0.03
<i>p</i> -Br	0.24	0.23	0.21	0.25	0.24	0.23 ± 0.02
p-Cl	0.24	0.22	0.19	0.22	0.22	0.22 ± 0.02
p-Me	0.16	0.14	0.14	0.14	0.15	0.15 ± 0.01
p-Et	0.17	0.15	0.14	0.16	0.14	0.15 ± 0.01
p-CF ₃	- 0.004	-0.004	-0.03	-0.02	- 0.003	-0.01 ± 0.01
p-F	0.02	-0.03	-0.04	- 0.01	-0.05	-0.02 ± 0.03
m-Me	0	0	0	0	0	0
<i>m</i> -Br	0.16	0.17	0.07	0.10	0.08	0.12 ± 0.05
m-Bu ^t	0.09	0.09	0.10	0.15	0.12	0.11 ± 0.03
m-CN	0.10	0.14	0.11	0.12	0.09	0.11 ± 0.02
m-OMe	0.11	0.09	0.09	0.11	0.08	0.10 ± 0.01
m-COOMe	0.10	0.05	0.12	0.10	0.12	0.10 ± 0.03
m-F	0.05	0.04	0.02	0.04	-0.001	0.03 ± 0.02
$m-NO_2$	-0.03	0.01	-0.01	0.03	0.003	0.001 ± 0.02
m-Cl	-0.04	-0.03	-0.09	-0.04	-0.06	-0.05 ± 0.02
m-CF ₃	- 0.05	- 0.06	-0.10	- 0.06	-0.08	-0.07 ± 0.02

TABLE 3. Method B: σ_{JJ} values at different temperatures based on an averaged ρ_{mb} value of -0.35

Y	Temperature	Temperature (°C)							
	110	120	140	150	160				
H	0	0	0	0	0	0			
p-NMe ₂	1.18	1.11	0.95	0.91	0.86	1.00 ± 0.14			
p-MeS	0.53	0.57	0.58	0.72	0.70	0.62 ± 0.08			
p-COMe	0.58	0.53	0.53	0.58	0.52	0.55 ± 0.03			
p-MeSO	0.53	0.46	0.48	0.48	0.54	0.50 ± 0.03			
p-Ph	0.49	0.49	0.44	0.45	0.46	0.47 ± 0.02			
p-CN	0.40	0.41	0.40	0.45	0.42	0.42 ± 0.02			
$p-MeSO_2$	0.38	0.36	0.39	0.43	0.48	0.41 ± 0.05			
p-COOH	0.43	0.41	0.36	0.34	0.39	0.39 ± 0.04			
p-CONH ₂	0.39	0.40	0.38	0.40	0.34	0.38 ± 0.02			
$p-NO_2$	0.37	0.37	0.36	0.38	0.33	0.36 ± 0.02			
p-COOMe	0.31	0.32	0.32	0.37	0.34	0.33 ± 0.02			
p-SiMe ₃	0.33	0.31	0.30	0.31	0.29	0.31 ± 0.01			
p-Pr ^c	0.38	0.31	0.25	0.25	0.16	0.27 ± 0.08			
$p-\mathbf{Bu}^{t}$	0.23	0.26	0.29	0.23	0.28	0.26 ± 0.03			
p-OMe	0.30	0.28	0.19	0.22	0.16	0.23 ± 0.06			
p-Br	0.24	0.23	0.22	0.25	0.25	0.24 ± 0.01			
p-Cl	0.24	0.22	0.20	0.22	0.23	0.22 ± 0.01			
p-Me	0.17	0.16	0.13	0.15	0.14	0.15 ± 0.01			
<i>p</i> -Et	0.18	0.17	0.12	0.16	0.12	0.15 ± 0.03			
p-CF ₃	-0.02	-0.03	- 0.001	-0.03	0.02	-0.01 ± 0.02			
p-F	0.03	-0.01	-0.05	-0.004	-0.06	-0.02 ± 0.03			
m-Me	0.007	0.01	-0.01	-0.004	-0.06	-0.001 ± 0.008			
<i>m</i> -Br	0.15	0.16	0.09	0.10	0.10	0.12 ± 0.03			
m-Bu ^t	0.10	0.10	0.09	0.15	0.11	0.11 ± 0.02			
m-CN	0.07	0.09	0.15	0.10	0.13	0.11 ± 0.02			
m-OMe	0.11	0.09	0.08	0.11	0.06	0.09 ± 0.02			
m-COOMe	0.09	0.08	0.13	0.10	0.13	0.11 ± 0.02			
<i>m</i> -F	0.04	0.03	0.03	0.04	0.01	0.03 ± 0.01			
m-NO ₂	-0.05	- 0.01	0.02	0.02	0.03	0.002 ± 0.03			
m-Cl	-0.04	-0.04	-0.09	- 0.05	- 0.06	-0.06 ± 0.02			
m-CF ₃	- 0.06	-0.08	- 0.08	-0.07	-0.06	-0.07 ± 0.01			

If for each table (2, 3 and 4), we cross-correlate the σ_{JJ}^{i} values for each temperature with each other (Table 5), we find that the degree of correlation (*vide supra*) is good. In other words, for each method of calculation, the rate data collected at the five temperatures form a self-consistent whole; they conform to one pattern, i.e. one σ_{JJ}^{i} scale.

Finally, we correlated the average σ_{JJ} values derived from the three different methods, as shown in Table 6. Clearly, there are no significant differences among all of these three methods, i.e. regardless of the approach that has been taken, basically the same σ scale is obtained. It is particularly noteworthy that our σ_{JJ} scale is not sensitive to the exact ρ_{mh} value chosen, provided that the value is within a certain range, e.g. -0.20 to -0.40.

As mentioned above, both the rate constants and the ¹⁹F NMR data are prerequisites for the evaluation of the σ_{JJ} values. The cyclodimerization rate constants of compounds 1 and 2 at five temperatures are listed in Table 7, whereas the corresponding Arrhenius and activation parameters are summarized in Table 8. The ¹⁹F NMR data together with the σ_{mb} values for 1 and 2 are given in Table 9*. Our σ_{mb} values for the three sulfur-containing groups MeSO₂-, MeSO- and MeS- are 0.64, 0.19 and -0.18, whereas the corresponding $\sigma_{\rm P}$ values are 0.73, 0.17 and 0.06, and the $\sigma_{\rm R}^{0}$ values are 0.16, 0.00 and -0.16 [7]. Clearly, the MeS group can decrease the degree of ground-state polarization of the π -bond of trifluorostyrenes and help to increase the two other groups, especially MeSO₂-, will have opposite effects.

The main interest, however, lies in the values and relative magnitudes (in parentheses) of the σ values. For the three groups MeSO₂-, MeSO- and MeS-, the σ_{JJ} values are 0.41 [7] (1.0), 0.50 (1.2) and 0.62 (1.5), whereas Arnold's σ_{α} values are 0.005 (1.0), 0.018 (3.6) and 0.063 (12.6), and Creary's σ_{C} values are 0.18

^{*}The σ_{mb} and σ_{JJ} values for the MeSO₂- group given in ref. 1 are in error. They should be revised from 0.55 to 0.64 and from 0.38±0.03 to 0.41±0.04, respectively.

TABLE 4. Method C: σ_{ij} values at different temperatures based on the ρ_{mb} value of -0.30

Y	Temperature	Temperature (°C)							
	110	120	140	150	160				
Н	0	0	0	0	0	0			
p-NMe ₂	1.23	1.16	1.00	0.96	0.91	1.05 ± 0.14			
p-MeS	0.54	0.58	0.59	0.73	0.71	0.63 ± 0.08			
p-COMe	0.55	0.50	0.50	0.55	0.49	0.52 ± 0.03			
<i>p</i> -MeSO	0.52	0.45	0.47	0.47	0.54	0.49 ± 0.04			
p-Ph	0.49	0.49	0.44	0.45	0.46	0.47 ± 0.02			
p-CN	0.36	0.37	0.36	0.41	0.39	0.38 ± 0.02			
p-MeSO ₂	0.35	0.32	0.36	0.39	0.45	0.37 ± 0.05			
p-COOH	0.41	0.39	0.34	0.32	0.37	0.37 ± 0.04			
<i>p</i> -CONH ₂	0.38	0.39	0.37	0.39	0.33	0.37 ± 0.02			
p-NO ₂	0.33	0.33	0.32	0.34	0.29	0.32 ± 0.02			
p-COOMe	0.29	0.30	0.30	0.35	0.32	0.31 ± 0.02			
<i>p</i> -SiMe ₃	0.32	0.30	0.29	0.30	0.28	0.30 ± 0.01			
p-Pr ^c	0.40	0.33	0.27	0.27	0.28	0.30 ± 0.06			
p-Bu ^t	0.24	0.27	0.30	0.24	0.29	0.27 ± 0.03			
p-OMe	0.34	0.32	0.23	0.26	0.20	0.27 ± 0.06			
<i>p</i> -Br	0.23	0.22	0.21	0.24	0.23	0.23 ± 0.01			
p-Cl	0.23	0.21	0.19	0.21	0.22	0.21 ± 0.01			
p-Me	0.18	0.17	0.14	0.16	0.15	0.16 ± 0.02			
<i>p</i> -Et	0.20	0.19	0.14	0.18	0.14	0.17 ± 0.03			
p-CF ₃	-0.04	- 0.05	-0.03	-0.05	- 0.003	-0.03 ± 0.02			
p-F	0.04	-0.002	- 0.04	0.01	- 0.05	-0.01 ± 0.04			
m-Me	0.017	0.02	0	0.014	0	0.01 ± 0.01			
<i>m</i> -Br	0.13	0.14	0.07	0.08	0.08	0.10 ± 0.03			
m-Bu ^t	0.11	0.11	0.10	0.16	0.12	0.12 ± 0.02			
m-CN	0.03	0.06	0.11	0.06	0.09	0.07 ± 0.03			
m-OMe	0.12	0.10	0.09	0.12	0.08	0.10 ± 0.02			
m-COOMe	0.08	0.07	0.12	0.09	0.12	0.10 ± 0.02			
m-F	0.03	0.02	0.02	0.03	-0.001	0.02 ± 0.01			
$m-NO_2$	-0.09	-0.04	-0.01	-0.02	-0.003	-0.03 ± 0.03			
m-Cl	-0.05	-0.04	- 0.09	-0.05	-0.06	-0.06 ± 0.02			
m-CF ₃	-0.08	-0.10	-0.10	- 0.09	-0.08	-0.09 ± 0.01			

TABLE 5. Correlation coefficients (values of r) for the crosscorrelation between the σ_{JJ} values at different temperatures as well as the averaged σ_{JJ} value for Method B for 32 substituents^a

	110 °C	120 °C	140 °C	150 °C	160 °C	Averaged value
110 °C	1.000	0.993	0.980	0.943	0.945	0.987
120 °C		1.000	0.990	0.969	0.968	0.994
140 °C			1.000	0.970	0.985	0.995
150 °C				1.000	0.981	0.988
160 °C					1.000	0.989
Averaged value						1.000

*Similar results were obtained for Method A and Method C.

(1.0), 0.18 (1.0) and 0.43 (2.4), respectively. Obviously, the σ_{α}^{\cdot} and σ_{C}^{\cdot} values for the first two groups differ from the σ_{JJ}^{\cdot} values in opposite ways. Although the trustworthiness of the σ_{JJ}^{\cdot} scale has been shown very recently, we suggest that all the above-mentioned σ^{\cdot} values should be tested in future by rigorously measured

TABLE 6. Correlation between pairs of different methods^a

Correlation method	Correlation coefficient (r)
A with C	0.9997
A with B	0.9963
B with C	0.9956

*Thirty-two averaged σ_{JJ} values were used for each method.

rate constants of an exceedingly clean radical reaction (cf. refs. 1 and 8).

The substituent effects of sulfur-containing groups on an α -spin have been discussed by previous workers (cf. refs. 3 and 4). We prefer to visualize these effects in terms of two simple and well-known resonance schemes involving n-pair type resonance (Scheme 1) and π -pair type resonance (Scheme 2). The dashed line in these schemes represents either shared or unshared electron pairs.

Compound	110 °C	120 °C	140 °C	150 °C	160 °C
	$\frac{1}{k \times 10^5}$	$k \times 10^5$	$k \times 10^{4a}$	$k \times 10^4$	$k \times 10^4$
1	2.24 ± 0.02	3.72±0.16	1.38	2.30 ± 0.01	4.46 ± 0.00
2	1.12 ± 0.09	2.06 ± 0.09	0.80	1.42 ± 0.02	2.67 ± 0.13

TABLE 7. Rate constants for the thermal dimerization of compounds 1 and 2 at different temperatures

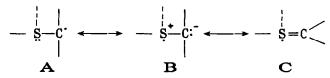

^aCalculated from a correlation of the other rate constants with the temperatures.

TABLE 8. The Arrhenius and activation parameters for the cyclodimerization of compounds 1 and 2

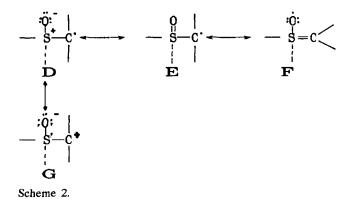

Compound	Temperature (°C)	ΔH^{\ddagger} (kcal mol ⁻¹)	ΔS^{\ddagger} (e.u.)	ΔG^{\ddagger} (kcal mol ⁻¹)	
1	110	18.97±2.27	-30.87 ± 5.9	30.80	$E = 19.73 \pm 2.27$
	120	18.95 ± 2.27	-31.23 ± 5.8	31.23	$(kcal mol^{-1})$
	140	18.91 ± 2.27	-31.15 ± 5.5	31.78	$\ln A = 15.11 \pm 2.8$
	150	18.89 ± 2.27	-31.31 ± 5.4	32.14	
	160	18.87 ± 2.27	-31.12 ± 5.2	32.35	r=0.9984
2	110	20.25 ± 1.75	-28.91 ± 4.6	31.33	$E = 21.01 \pm 1.75$
	120	20.23 ± 1.75	-29.14 ± 4.4	31.81	$(kcal mol^{-1})$
	140	20.19 ± 1.75	-29.14 ± 4.2	32.23	$\ln A = 16.12 \pm 2.2$
	150	20.17 ± 1.75	-29.25 ± 4.1	32.55	
	160	20.15 ± 1.75	-29.19 ± 4.0	32.70	r = 0.9987

TABLE 9. The chemical shifts and coupling constants for compounds 1 and 2

Compound	Chemical shifts (ppm)			Coupling constants (Hz)			$\sigma_{ m mb}$
	F ¹	F ²	F ³	J ₁₂	J ₂₃	J ₁₃	
1	22.93	37.48	100.83	76	38	120	0.19
2	20.90	35.47	101.60	70	40	120	0.64

Scheme 1.

Apparently, although the MeS- group can delocalize the spin only via Scheme 1, with perhaps a heavily weighted contribution from structure C, it becomes a very effective α -spin-stabilizer. On the other hand, the MeSO₂-- group remains a good spin-stabilizer, even though it can only operate via Scheme 2, by analogy with substituents such as CH₃CO- ($\sigma_{II} = 0.54$). Finally, we may note that the MeSO- group is a better spinstabilizing group than the MeSO₂- group. This observation might be related to the fact that the MeSOgroup, which carries with it both an n-pair and a π pair, can delocalize spin via both schemes.

Experimental

The syntheses of *para*-methylsulfinyl-trifluorostyrene (1) and *para*-methylsulfonyl α,β,β -trifluorostyrene (2) have been reported elsewhere [1]. ¹⁹F NMR data (with chemical shifts in ppm from external TFA and positive for upfield shifts) were recorded on a Varian EM-360L spectrometer (60 MHz for ¹H and 56.4 MHz for ¹⁹F).

The rate constants for the dimerizations of 1 and 2 in THF over the temperature range 110–160 °C were measured by previously described methods [9]; however, tetrahydrofuran was used as the solvent instead of n-hexane in which the solubility of 1 and 2 is too low.

Acknowledgement

We gratefully acknowledge financial support by the National Natural Science Foundation of China.

References

- 1 X.-K. Jiang and G.-Z. Ji, J. Org. Chem., 57 (1992) 6051.
- 2 X.-K. Jiang, G.-Z. Ji and Y.-Q. Shi, Chin. J. Chem., 9 (1991) 162.
- 3 D.R. Arnold, Can. J. Chem., 62 (1984) 1164.

- 4 X. Creary and M.E. Mehrsheikh-Mohammadi, J. Org. Chem., 51 (1986) 1110.
- 5 G.-Z. Ji, X.-K. Jiang, Y.-H. Zhang, S.-G. Yuan, C.-X. Yu, Y.-Q. Shi, X.-L. Zhang and W.-T. Shi, *J. Phys. Org. Chem.*, 3 (1990) 643.
- 6 X.-K. Jiang, G.-Z. Ji and C.-X. Yu, Acta Chim. Sinica, (Engl. Ed.), (1984) 82.
- 7 O. Exner, in N.B. Chapmann and J. Shorter (eds.), *Correlation* Analysis in Chemistry. Recent Advances, Plenum Press, New York, 1978, Chap. 10.
- 8 (a) G.H.-X. Guo, S.S.-X. Sun, G.-Z. Ji and X.-K. Jiang, J. Chem. Res. (S), (1993) 166; J. Chem. Res. (M), (1993) 1123;
 (b) X.-K. Jiang, W.W. Z. Liu and S.-H. Wu, J. Phys. Org. Chem., in press.
- 9 X.-K. Jiang, G.-Z. Ji and C.-X. Yu, Acta Chim. Sinica, 44 (1986) 72; (Engl. Ed.), (1985) 369.